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Mobile Image Annotation on the Cloud
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Abstract—With the rapid development of the cloud computing
and mobile service, users expect a better experience through mul-
timedia computing, such as automatic or semi-automatic personal
image and video organization and intelligent user interface. These
functions heavily depend on the success of image understanding,
and thus large-scale image annotation has received intensive
attention in recent years. The collaboration between mobile and
cloud opens a new avenue for image annotation, because the heavy
computation can be transferred to the cloud for immediately
responding user actions. In this paper, we present a scheme for
image annotation on the cloud, which transmits mobile images
compressed by Hamming compressed sensing to the cloud and
conducts semantic annotation through a novel Hessian regular-
ized support vector machine on the cloud. We carefully explained
the rationality of Hessian regularization for encoding the local
geometry of the compact support of the marginal distribution and
proved that Hessian regularized support vector machine in the
reproducing kernel Hilbert space is equivalent to conduct Hessian
regularized support vector machine in the space spanned by the
principal components of the kernel principal component analysis.
We conducted experiments on the PASCAL VOC’07 dataset and
demonstrated the effectiveness of Hessian regularized support
vector machine for large-scale image annotation.

Index Terms—Cloud computing, Hessian Eigenmaps and sup-
port vector machines, manifold regularization, mobile service.

I. INTRODUCTION

T ODAY, smart phones equipped with a digital camera
have become more and more popular, and personal dig-

ital photo is easily produced in massive quantities. Although
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it is popular to combine time and directory for the photo
management in smart phones, it is inconvenient to effectively
retrieve photos at the semantic level. Therefore, a large number
of image annotation based systems [12], [14], [27], [33], [35]
have been developed by utilizing the semantic keywords for
the personal photo organization.
Image annotation aims to assign several key words to an

image. It is one of the most fundamental research problems
in image processing, computer vision and multimedia [19].
Typically, it is accomplished by the following procedure.
Given a collection of training images, we first extract visual
features to represent these images [17], [41] . Afterward, a set
of models are trained based on these images for the subsequent
annotation, each of which corresponds to a particular key word
(or concept).
Recently, various approaches based on clustering algorithms

[43], support vector machines (SVM) [3], [37] [55], [63] , man-
ifold learning algorithms [31], [42] [56] have been proposed to
resolve the image annotation task. Labeled samples are effective
to improve the annotation performance. However, it is difficult
to get a large number of labeled samples. Thus semi-supervised
learning is promising to improve the annotation performance.
Motivated by recent progress in Hessian Eigenmaps [16] and
SVM, in this paper, we introduce the Hessian regularization to
improve SVM for large-scale image annotation.
Given limited computational resource in a mobile, in general,

it is impossible to annotate a newly captured image in an online
fashion. In addition, the small storage in a mobile does not allow
users to maintain a large number of pictures to form a reliable
manifold regularization. Therefore, it is essential to consider an
alternative way to annotate a mobile image.
With the rapid development of the Internet technology, cloud

computing [38], [58] becomes mature and already offers dozens
of services [26], [38] [52], [54] to the community, in general
including 1) Cloud Infrastructures as a Service (IaaS) that pro-
vides the users with storage, networks and other high scalable
computing resource, e.g., virtual computer servers, 2) Cloud
Platform as a Service (PaaS) that provides APIs to the devel-
opment of applications on an abstract platform, and 3) Cloud
Software as a Service (SaaS) that provides applications running
on a cloud infrastructure to various client devices through a thin
client interface, e.g., a web browser [38]. Cloud computing is
rapidly changing the landscape of information technology [1],
[60] , as well as attracting more and more academic attentions
such as service-oriented science [22], [36] , online image pro-
cessing services [50], [51] , handwriting recognition services
[23], and storage service for storing scientific data [8]. Since sci-
entific computing usually requires a large number of resources
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Fig. 1. Image annotation on the cloud. This scheme contains the following five components: 1) using Hamming compressed sensing (HCS) to compress a mobile
image and transmit the compressed image to the cloud, 2) using HCS to decode the compressed image in the cloud, 3) training the Hessian regularized support
vector machines by using a small number of labeled images and a large number of unlabeled images stored in the cloud, 4) annotating the mobile image by using
the trained Hessian regularized support vector machines and 5) return the annotation results to the mobile terminal.

to deliver results for ever-growing problem size in an accept-
able time, the cloud computing technology provides significant
benefit for scientific computing community by offering cheap
alternative to supercomputers, a much more reliable platform
than grids, and a much more scalable platform than clusters
[36]. In addition, it deals with the trouble raised by client ter-
minals diversity of Mobile Internet comfortably. Thus, it is nat-
ural to transmit the mobile image to the cloud for annotation
and storage. By utilizing cloud computing, we can easily handle
image annotation requests of mobile devices with different op-
eration systems, such as iOS, Android, Windows Phone, and
Blackberry. Thus, image annotation can be provided to the end
user as a kind of SaaS cloud service. Especially, the proposed
Hessian regularized support vector machines which involves
large computing resources are ready applicable in the cloud IaaS
platform and can be easily implemented in a parallel fashion to
fully utilize the strength of the cloud computing.
The success of compressed sensing [9], [15] opens an in-

novative channel to effectively and efficiently compress mo-
bile images, so we can save cost for transmitting mobile im-
ages to the cloud. Note that in contrast to conventional com-
pressed sensing and 1-bit compressed sensing [7], Hamming
compressed sensing (HCS) [62] is more suitable for the pro-
posed application, because HCS can directly recover a digital
signal (the quantized real-valued signal) from the quantization

of its linear measurements. HCS is based on the observation of
the statistics of 1 and-1 in the 1-bit measurements from the view-
point of computational geometry. The effectiveness of HCS is
ensured by the strong theoretical guarantee for the small re-
covery error bound and the small number of measurements re-
quired by successful recovery.
Based on the above descriptions, precisely annotating images

captured by a mobile camera or stored in a mobile become re-
ality through the following stages: 1) training the Hessian reg-
ularized support vector machines by using a small number of
labeled images and a large number of unlabeled images stored
in the cloud, 2) using HCS to compress a mobile image and
transmit the compressed image to the cloud, 3) using HCS to
decode the compressed image in the cloud, 4) annotating the
mobile image by the trained Hessian regularized support vector
machines and 5) return the annotation results to the mobile.
Fig. 1 shows the architecture of the proposed mobile image

annotation on the cloud. The most main client terminal is a
smartphone with Android or iOS installed. The communica-
tion channel between client terminals and the cloud supports
the popular socket protocol, such as WiFi, EDGE, 3G and 4G
networks. The bandwidth of popular wireless communication
protocols is basic suit for the data of image compressed by Ham-
ming compressed sensing (HCS). In general, less of time delay
of transmission will make customers satisfied. It feels like that
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the annotation is done locally. The main computing process of
the image annotation are actually all provisioned in the cloud,
including HCS decoding, training the Hessian regularized SVM
with both a small number of labeled images and a large number
of unlabeled images stored in the cloud, and annotating the
image using the trained Hessian regularized SVM.With the ben-
efit of the rapid elasticity capability of cloud computing, the
computing and storage resource can be easily and quickly scale
out to meet the increasing requirement when there is a rise in
image annotation service demand.
The main contribution of this paper is the newly developed

Hessian regularized support vector machine for large-scale
image annotation. Given the limited page length, the other
parts, which are easy to implement based on the related refer-
ences, will not be detailed in this paper.
The rest of the paper is organized as follows: In Section II, we

present related works on image annotation. In Section III, we
detail the newly proposed Hessian regularized support vector
machines. Section IV shows the experimental results on the
PASCAL VOC challenge 2007. Section V concludes the paper.

II. RELATED WORK

In recent years, a dozen of effective methods have been pro-
posed to automatically annotate images, which can be grouped
into three categories according to the used machine learning
schemes, including unsupervised, supervised and semi-super-
vised learning.
Unsupervised learning algorithms, such as topic model [2],

[39] , nonnegative matrix factorization [29] and clustering [43],
have been introduced to annotate images. For example, Barnard
et al. [2] presented a scheme of probabilistic latent variable
model to infer relations between visual features of images and
the associated texts. Extensive numerical experiments [39] veri-
fied the appealing accuracy, consistency and efficiency of latent
space models. In contrast to latent variable models that need to
model sample distribution properly, similarity based clustering
algorithms do not assume the distribution of the image set. Thus
normalized cut (NCut) [48] and its extensions become popular
in practice [11], [18] . Recently, Papadopoulos et al. [43] pre-
sented a clustering scheme for the detection of landmarks and
events.
Supervised learning, such as support vector machines (SVM)

[57], parallel least squares [24] and decision trees [44], based
image annotation explores the relationship between tags and
image visual features via a set of training samples. For example,
Wang et al. [59] presented a novel supervise topic model [6] to
predict class labels and annotation terms simultaneously. Shi et
al. [49] proposed the text-based Bayesian model (TBM) to im-
prove Bayesian HierarchicalMultinomialMixtureModels (BH-
MMMs), since the original annotations are incomplete to esti-
mate the accurate model parameter. Since visual features are
distributed on a low dimensional manifold embedded in a high
dimensional ambient space, many manifold learning based di-
mension reduction tools [31], [35] have been introduced to an-
notate images. For example, Lin et al. [35] constructed the re-
lational graphs through human computer interactions to encode
similar and dissimilar image pairs. Maximum margin projec-

tion (MMP) [31] finds both the local geometry of a within-class
graph and discriminant information of a between-class graph.
Although active learning [28] can be introduced to interactively
select only effective unlabeled samples for labeling, the user
labeling effort is heavy. In general, supervised learning algo-
rithms require a large number of manually labeled samples to
obtain robust annotation performance.
In practice, it is impossible to get a large number of la-

beled samples. Considering the availability of large amount of
unlabeled samples, e.g., social images on Flickr, Picasa and
Photobucket Pro, semi-supervised image annotation has re-
ceived intensive attention. In particular, the unlabeled samples
are used to explore the data distribution that can be deemed as a
prior to control the model complexity. This strategy essentially
enhances the image annotation performance. Bilenko et al.
[5] developed a new framework that learns distance-function
learning by exploring constrains. This method is a variant
of k-means clustering. Shao et al. [47] presented a semi-su-
pervised algorithm that can be treated as a combination of
statistical inference and manifold learning. Thus, in some way
its performance is superior to the methods belonging to mere
latent space models.
Although existing semi-supervised learning algorithms [13],

[64] have improved image annotation a lot, they are mainly
based upon the well-known Laplacian regularization [3], [4] .
Recently, it has been observed that the Laplacian regulariza-
tion biases the solution towards a constant function [34], [52]
. In contrast to the Laplacian regularization, we introduce the
Hessian regularization to image annotation, which drives the
learned function varying linearly along the data manifold. In
particular, we treat Hessian Eigenmaps [16] as a manifold regu-
larization for encoding the local geometry of unlabeled samples
to improve support vector machines for large-scale image anno-
tation. That is because Hessian Eigenmaps calculate the tangent
Hessian to approximate the Hessian energy in a computation-
ally effective way.

III. HESSIAN REGULARIZED SUPPORT VECTOR MACHINES

Support vector machines (SVM) [57] are an innovative and
effective classification method developed under the theme of
the statistical learning theory [57]. It has attractive advantages
in solving small sample learning, data nonlinearity and data high
dimensionality problems, and thus received intensive attentions
in recent years.
A dozen variants of SVM have been developed to handle

different problems, such as transductive SVM, parallel SVM,
Nesterov SVM [63], multi-view SVM, Laplacian regularized
SVM [4], ensemble manifold regularized SVM [25] and active
SVM [55].
In this paper, we present a new variant of SVM, Hessian reg-

ularized SVM. It uses a large number of unlabeled samples to
construct the Hessian regularization to boost the classification
performance of SVM, when the number of labeled samples is
small. Although it is similar to Laplacian regularized SVM [4],
it significantly improves Laplacian regularized SVM. That is be-
cause Hessian regularization drives the learned function varying
linearly along the data manifold.
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Fig. 2. The tangent Hessian of at the point in is defined as the or-
dinary Hessian of , because the smooth mapping uniquely
maps on to . The coordinate system of at

can be estimated by the eigenspace of the neighborhood of asso-
ciated with the largest eigenvalues.

Given a small number of labeled images
with and a large number of unlabeled images

, Hessian regularized SVM learns a classifica-
tion function to separate positive samples from negative sam-
ples. Under the theme of semi-supervised learning, it is gen-
eral to assume labeled images are drawn
from and unlabeled images are drawn from the mar-
ginal distribution of . This marginal distribution can
help the function learning if is related to the conditional
distribution . The underlying assumption here is close
image pairs and mean similar conditional distribution
pairs and . The manifold assumption is widely
used in computer vision andmultimedia applications. It assumes
close image pairs induce similar conditional distribution pairs.
It is ideal to adopt this assumption on images containing single
object. In real-world applications, each image usually contains
multiple objects, but the manifold assumption still helps to im-
prove the performance. Therefore, it is important to discover the
intrinsic geometry of the manifold , i.e., the support of
, from which samples are drawn.
In this Section, we first introduce Hessian regularization in-

duced by the unlabeled images, which is derived from Hessian
Eigenmaps [16].We then present Hessian regularized SVM. Af-
terward, we show rationality of Hessian regularization by com-
paring with graph Laplacian. Finally we show Hessian regular-
ized SVM in RKHS is equal to conducting Hessian regularized
linear SVM in the space spanned by the principal components
of kernel principal component analysis.

A. Hessian Regularization

Given a smooth manifold , we can define the tan-
gent space for point . In order to obtain
the Hessian of a function , we need to define the
orthonormal coordinate system of which can be approx-
imated by the eigenspace spanned by the neighborhood of
associated with the largest eigenvalues (this essentially de-
termines the intrinsic dimension of the manifold and it can
be selected in an empirical way, e.g., according to the distribu-
tion of the eigenvalues). For each point , we can find
a unique closest point on , i.e., there is a smooth map-
ping that uniquely maps on to . There-
fore, the Hessian of at the point in can be defined
as the ordinary Hessian of . Thus, Donoho
and Crimes [16] termed it as tangent Hessian. Fig. 2 illustrates

the above process to define the tangent Hessian, mathematically
defined by

(1)

The construction of the Hessian matrix of a point depends on
the choice of the coordinate system in . Since formed
by the large number of unlabeled images is not linear, the coor-
dinate system in varies along the manifold. Fortunately,
the Frobenius norm of a Hessian matrix is invariant to the coor-
dinate changes, and therefore we can have the Hessian regular-
ization to encode the average curviness of along the manifold
, i.e.,

(2)

It has been shown by Donoho and Crimes in [16] that
has a dimensional nullspace spanned by the constant func-
tion and the eigenspace of the neighborhood of associated
with the largest eigenvalues. Thus, we brief the discretization
of the Hessian regularization for encoding the local geometry of
unlabeled samples in the following steps [34]:
Step 1: Finding the -nearest neighbors of the -th un-

labeled sample and centralizing the neighbor-
hood by taking off from the -nearest neighbors.
This centralization makes to be the origin of the
tangent space . This is different from Hes-
sian Eigenmaps [16] that use the average of all the
-nearest neighbors and as the origin. The advan-
tage of this method is that the -th unlabeled sample
is exactly a sample drawn from the intrinsic man-

ifold. In contrast, Donoho’s method uses the mean
of and its -nearest neighbors as the center that
makes the local tangent space biased.

Step 2: Estimating the orthonormal coordinate system of
the tangent space by the eigenspace
of the neighborhood of associated with the
largest eigenvalues. This can be implemented
by conducting singular value decomposition on

, where in is the -th sample
in the -nearest neighbors .

Step 3: Taking the -dimensional nullspace off from
the matrix by
using Gram-Schmidt orthonormalization, and re-
sulting . The Frobenius norm of is given by

.
Step 4: Accumulating over all images and then

resulting the Hessian regularization .

B. Hessian Regularized Support Vector Machines

The same as the ordinary SVM that takes hinge loss, Hessian
regularized SVM for binary classification thus takes the form

(3)



TAO et al.: HESSIAN REGULARIZED SUPPORT VECTOR MACHINES FOR MOBILE IMAGE ANNOTATION ON THE CLOUD 837

where is the loss function and takes the form
for obtaining the margin max-

imization, is the reproducing kernel Hilbert space (RKHS)
norm of , controls the complexity of in the ambient

space , is the Hessian regularization to encode the in-
trinsic geometry of marginal distribution , and controls
the complexity of in compact support of .
Theorem 1: The minimization of Hessian regularized SVM

w.r.t. exists and takes the following representation

(4)

where .
This representer theorem indicates that can be completely

characterized by an expansion of both labeled and unlabeled
samples. It shows the existence and the general form of the solu-
tion of Hessian regularized SVM. The proof of this representer
theorem is almost standard in kernel machines, e.g., representer
theorem proved in [4], so we only sketch it in the following
lines.

Proof: The space spanned by the kernels centered at la-
beled and unlabeled samples is
and its orthogonal complement is . Thus, any can
be written as , wherein is the projection of
to and is the projection of to .
The inner product associated with is defined by

and thus . For any and

, if , then we have .
Since is the orthogonal complement of and is spanned

by kernels centered at labeled and unlabeled samples drawn
from , any functions in vanishes on . This results in
for , , i.e.,

. Therefore, .
From (3), by introducing the slack variables for ,

we have

(5)

Similar to Laplacian SVM [3], by using the Lagrangian
method, the optimal is given by

(6)

where is the identity matrix, is the zero matrix,
and is given by

(7)

where with is
the identity matrix and is the zero matrix.
Problem (7) is a standard quadratic programming and can

be solved by standard SVM solvers, such as LIBSVM [10],
NeSVM [63], SVM-light [40], SVM-Perf [32], and parallel
SVM. Different SVM solvers converge at different rates and
have particular advantages. For example, NeSVM converges
at rate , SVM-Perf converges at rate , and
Pegasos [46] converges at rate . For mobile image
annotation on the cloud, we can consider parallel SVM which
distributes training data on parallel machines (in the cloud),
and reduces memory requirement through parallel row-based
Incomplete Cholesky Factorization (ICF) on the loaded data.
It time cost is about and its space cost is about

, wherein is the problem size (the number of
samples for constructing the kernel matrix), is the reduced
dimensionality obtained by ICF and is number of machines
in the cloud to conduct the parallel computing.

C. Rationality of Hessian Regularization

Fitting the hinge loss function for labeled images is an
essential ill-posed problem under the theme of regulariza-
tion theory, so we need regularizations and
to smooth the fitting function to avoid the wild oscillation.
Since an RKHS is a Hilbert space of functions of the form

shown in the representer theorem,
essentially controls the capacity of RKHS. Thus, it

becomes popular in kernel machines. In contrast to existing
kernel classification models, , originally used in dimen-
sion reduction [16] and linear regression (with different form
according to Eells-energy [20] but share similar functional
[34]), smoothes the classification function along the manifold
and further restricts the space of admissible solutions by con-
sidering the distribution of unlabeled samples (the underlying
assumption is both the unlabeled and labeled samples are inde-
pendent and identically distributed). The combination of
and ensures the solution has good predictive capabilities
for the subsequent classification.
In Hessian regularized SVM, since the marginal distribution
is unknown in practice, it is essential to empirically estimate

a suitable penalty to encode the smoothness along the manifold
supporting . The Hessian regularization is such a suit-
able one because it encodes the local geometry of the compact
support of .
Although graph Laplacian [4] has

been introduced to classification and regression and has shown
promising support for improving the performance, its nullspace
is the constant function along the compact support of . Since
the function will not be penalized in the nullspace,
drives towards a constant function. In contrast to , the
Frobenius norm of the tangent Hessian
has the null space spanned by a constant function and a -di-
mensional original isometric coordinates. This fact has been
well explored by Eells and Lemaire [20], then by Donoho
and Crimes [16], and recently by Steinke and Hein [52]. This
property ensures the Hessian regularization drives the learned
classification varying linearly along the data manifold, be-
cause it penalizes the second derivative along the manifold
and ignores the normal direction. In addition, it has been
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shown [16] that Hessian Eigenmaps can handle non-convex
situations, such as a manifold containing holes, comparing
with ISOMap [53] and locally linear embedding (LLE) [45].
According to patch alignment for dimension reduction [61], we
know popular manifold learning algorithms encode different
kinds of local geometry which can be well characterized on the
tangent coordinate. Roughly, Hessian Eigenmaps is different
to other manifold learning algorithms, such as ISOMap, LLE,
Laplacian Eigenmaps [3], and Local Tangent Space Alignment,
because it is of second order while others are of first order.
Therefore, the Hessian regularization is
superior to the Laplacian regularization
for both classification and regression [34], and has the potential
to explore the intrinsic local geometry of the compact support
of .
In contrast to the Eells-energy used to penalize least squares

for linear regression [34], in which Eells-energy is a kind of Hes-
sian regularization, we use the Frobenius norm of the tangent
Hessian induced from Hessian Eigenmaps [16] for smoothing
SVM in RKHS along the compact support of the conditional
distribution .

D. Understanding RKHS

This small section presents an understanding to the RKHS
through the space spanned by the principal components of the
kernel principal components (KPCA). In particular, we prove
that Hessian regularized SVM in RKHS is equal to conducting
Hessian regularized linear SVM in the space spanned by the
principal components of KPCA.
Theorem 2: : Hessian regularized support vector machines in

RKHS are equivalent to conducting Hessian regularized linear
support vector machines in the principal components of KPCA.

Proof: Given labeled and unlabeled samples (built by
samples in ) and (built by samples in ), the covariance
matrix in RKHS is

(8)

For KPCA, we have eigenvector and the corresponding
eigenvalue satisfying . This is equal to solving

(9)

We can prove that , which is similar
to the proof the representer theorem. Then (9) is equivalent to
following optimization problem:

(10)

where , the solution of (9) is the eigenvector
and the corresponding eigenvalue .

The projection matrix of KPCA is given by ,
each

(11)

where .
Normalize , then we have

and .

Thus, we have .
Let , since

, we obtain . This results in .
Consequently, the feature of projected data in the KPCA space
(spanned by principal components of KPCA) is given by

, where is the -th column of .
Therefore, the data preprocessed by KPCA is .
The optimization problem of Hessian regularized linear SVM

is

(12)

The predict function is

Ordinarily, a bias term is added to the above form.
The primal problem:

(13)

Introducing the Lagrange multipliers , , we have

(14)

Take the derivatives with respect to and , we obtain

Using these identities, we formulate a reduced Lagrangian:
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where with is the identity matrix and is the
zero matrix, and .

Taking the derivative of the reduced Lagrangian with respect
to :

(15)
where is the Hessian matrix, so it is symmetric.
This implies:

(16)

Substituting back in the reduced Lagrangian we get

(17)

where

Since the data preprocessed by KPCA is , then we
have the equation at the bottom of the page. The predict function
is

(18)

This completes the proof.

IV. EXPERIMENTAL RESULTS

We evaluate the proposed Hessian regularized SVM on the
PASCAL VOC’07 [21], which have been popularly used to
evaluate image annotation and object recognition algorithms
[30]. In this paper, we use the GIST feature extracted by Guil-
laumin et al. [30]. The performance is measured by using the
average precision (AP) criterion for each class and the mean
AP (mAP) over all classes. Details of the experimental setup
and baseline models are given below.

A. the Setting of the Cloud Computing

We ran a set of experiments on a private cloud computing
platform built on the OpenStack system. OpenStack is an
open-source project that provides tools to build and manage
public and private clouds. We used ten high performance com-
puter workstations and high speed switch to build the private
cloud computing system. Each workstation was configured
with 6 Cores Xeon 2.4 GHz CPUs, 64G RAM, 2T hard disk and
1 Gbps networks interface card. Two of the workstations run
the OpenStack Object Storage Service, one workstation runs
the OpenStack Identity Service and Image Manager Service,
one workstation runs the OpenStack Web Service, and the rest
six workstations run the OpenStack Compute and Instance
Services. The system installed Windows Server 2008 can
launch 18 high performance virtual computer instances (4 Core
VCPU,16 G RAM, 600 G Hard disk), or at least 72 ordinary
virtual computer instances (1 Core VCPU, 4 G RAM, 100
G Hard disk), in less than 30 minutes. The cloud computing
experimental environment can satisfy the parallel computing
experiments, handling the load balancing issue, support flexible
use of the computing resources including virtual servers and
storage. In our training stage, we use only five high perfor-
mance virtual computers and 600 G cloud storage to contact all
the experiments.

B. PASCAL VOC’07

In our image annotation experiments, we use the PASCAL
VOC’07 dataset [21] that contains social images collected
from the Flickr website. This widely used PASCAL VOC’07
dataset includes 9,963 images which were approximately
equally divided into training and test subsets. The images in
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Fig. 3. Example images in the PASCAL VOC’07 dataset: the dataset contains 20 object classes (person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle, boat,
bus, car, motorbike, train, bottle, chair, dining table, potted plant, sofa, and tv/monitor) from 4 groups (person, animal, vehicle and indoor).

the dataset were downloaded by querying for images of 20
common entities, including person, bird, cat, cow, dog, horse,
sheep, aeroplane, bicycle, boat, bus, car, motorbike, train,
bottle, chair, dining table, potted plant, sofa, and tv/monitor,
from 4 big groups (person, animal, vehicle and indoor). Fur-
thermore, the images were labeled carefully. There are 24,640
annotated objects in the dataset. This indicates that multiple
objects from different classes may be presented in the same
image. Each image has a corresponding annotation file giving
information such as, the relevant filename, source, size, object
name and boundary box of object and so on. We mainly use the
object name information given by the annotation file during the
training process in our experiments. Example images are given
in Fig. 3. Since the procedure of feature extraction does not
need the boundary box of object. Thus, the process of object
detection is not included in our system for image annotation.
In particular, the training and test subsets contain 5,011

and 4,952 images, respectively. We further divide the training
set into two subsets, one with 4500 images for training and
one with 511 images for validation. We randomly conduct the
partition 10 times to obtain error bar in performance evaluation.
In the training set (4500 images), we use 10%, 20%, 30% 50%,
70% and 90% as labeled data and the rest as unlabeled data to
conduct semi-supervised learning. To evaluate the supervised

learning algorithms, we do not use unlabeled data. For all
methods, we tune the parameters on the set with 10% labeled
data and 90% unlabeled data and use the tuned parameters in
other settings.

C. GIST Descriptor

We use the GIST descriptor in our experiments. Originally,
the word “gist” refers to an abstract representation of the scene
that spontaneously activates memory representations of scene
categories [41]. Therefore, the GIST descriptor is a kind of bio-
logically-inspired features which uses image features from the
visual cortex. In order to obtain the GIST descriptor, the images
should be processed through three main low-level visual “chan-
nels”, including color channel, intensity channel and orientation
channel, at multiple spatial scales. Within the channels, the op-
erations called center-surround should be performed between
different scales. The GIST descriptor can be received after lin-
early combining the center-surround results to yield a saliency
map. In this Section, we use the GIST descriptor extracted by
Guillaumin et al. [30].

D. Baselines and Performance Measures

In this Section, we conduct experiments to evaluate the ef-
fectiveness of Hessian regularized SVM. We compare it with
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Fig. 4. We compared Hessian regularized SVM (HesSVM) with Laplacian regularized SVM (LapSVM), Laplacian regularized least squares (LapLS), SVM, and
least squares (LS) on some representative objects, including aeroplane, bird, sheep and person. In each subfigure, the x-coordinate is the number of the labeled
samples in the training set and y-coordinate is the average precision. These subfigures suggest the effectiveness of Hessian regularized SVM.

several popular methods including kernel least squares, SVM,
Laplacian regularized kernel least squares, and Laplacian reg-
ularized SVM. For all methods, regularization parameters
and (in Hessian regularized SVM, or the in Laplacian
regularized SVM) are tuned from the candidate set

. The parameter (the number of neighbors
in -nearest neighbors) used in computing the Hessian regular-
ization is set to 100 for all experiments.
We use the average precision (AP) as the performance evalu-

ation criterion for each class in Fig. 4 and the mean AP (mAP)
over all classes in Fig. 5.

E. Experimental Results and Analysis

In Fig. 4, we compare the proposed Hessian regularized SVM
with Laplacian regularized SVM, Laplacian regularized least
squares (in RKHS), SVM, and least squares (in RKHS) on the
PASCAL VOC’07 dataset with four representative categories.
Each subfigure of this figure shows the performance curves of
a particular category from aeroplane, bird, sheep and person. In
each subfigure, the x-coordinate is the number of the labeled
samples in the training set and y-coordinate is the average pre-
cision. It shows that the person class achieves the highest AP
and the sheep class achieves the lowest AP. This is because the

training sample number of different category varies greatly, e.g.,
the samples size of the person category in the training subset is
2,050 and the samples size of the sheep category is only 96. The
subfigures of bird and sheep show that the AP of Hessian regu-
larized support vector machines appears to decrease when there
are more labeled samples, because of the following three rea-
sons: 1) the size of the training set for a particular category is
small; 2) we conduct the partition of training set randomly; and
3) semi-supervised learning algorithms is sensitive to the distri-
bution of unlabeled samples. By analyzing these subfigures, we
can see that Hessian regularized SVM is superior to other base-
lines in general.
In Fig. 5, we show the mAP boxplots of different methods.

There are six subfigures, each of which corresponds to the per-
formance obtained by a particular number (450, 900, 1,350,
2,250, 3,150 and 4,050) of labeled training samples. For all sub-
figures, the number of training samples including labeled and
unlabeled samples is 4,500. These boxplots show Hessian regu-
larized SVM is superior to the baseline methods and validate the
effectiveness of Hessian regularization for encoding the local
geometry of the compact support of the marginal distribution.
In addition, Fig. 5 shows the mAP appears to increase when
there are more labeled samples.
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Fig. 5. The mAP boxplots of different methods. There are six subfigures, each of which corresponds to the performance obtained by a particular number (450,
900, 1,350, 2,250, 3,150 and 4,050) of labeled training samples. For all subfigures, the number of training samples including labeled and unlabeled samples is 4500.

V. CONCLUSIONS

This paper studies the image annotation problem on the
cloud. The presented scheme includes image compression
through Hamming compressed sensing and semi-supervised
classification for semantic labeling. Technically, we develop
Hessian regularized support vector machines that use a large
number of unlabeled images to encode the local geometry of the
compact support of the marginal distribution. The underlying
assumption is that close image pairs induce similar condi-
tional distribution pairs, and thus it is important to understand
the local geometry of the unlabeled images. Although graph
Laplacian was developed to explore the local geometry of a
data manifold, it is not as good as the Hessian regularization
induced from Hessian Eigenmaps. The nullspace of the graph
Laplacian is the constant function along the compact support
of the marginal distribution, while the nullspace of the Hessian
regularization is spanned by the constant function and the
original isometric coordinates. The nullspace is important
because the classification function will not be penalized along
the nullspace. The nullspace of the Hessian regularization is
richer than that of the graph Laplacian, so it is superior to graph
Laplacian for modeling the local geometry of the compact sup-
port of the marginal distribution. Thorough empirical studies
confirmed the proposed learning model.
However, the success of Hessian regularized support vector

machines for image annotation requires a precise estimation of
the distribution of unlabeled samples. Thus a large number of
unlabeled samples should be collected and the training sample
size is larger than traditional supervised learning algorithms.

That means the proposed algorithm requires more computing
and storage costs to achieve a high performance.
In the future, we will apply the proposed Hessian regularized

support vector machines to other applications, e.g., text anno-
tation, scene classification and spoken letter recognition. These
applications will attract more attentions with the rapid develop-
ment of mobile visual search and the cloud computing. In ad-
dition, Hessian regularized support vector machines have some
important parameters that affect the algorithm performance, and
thus the automatic selection of the parameters is important and
should be investigated carefully.
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